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Abstract—When dealing with epidemic spread, a very common
and dangerous situation is the presence of an epidemic disease
and a complication, especially in an elderly population or a
weakened one. In this case the complication, that alone is not,
in general, a fatal disease, may become risky. The ad hoc
resource allocation becomes a mandatory task, aiming at the
most rationale control strategy. This is the aim of this work,
in which a new model is introduced; five classes are considered:
the susceptible one, the class of people that has got the immunity
from the first dangerous disease (but not from the complication),
the class of patients with first disease, the class of those in the
risky situation of having both the diseases, and the category of
individuals with only the second disease that can still caught the
first serious one. Control actions are introduced, as vaccination
and medication, studying the effects of the different strategies.
Preliminary simulation results evidenced the effectiveness of the
proposed approach, allowing to determine a control strategy that
reduces the number of dead, with an efficient resource allocation.

Index Terms—interconnected epidemic diseases modeling, op-
timal control, vaccination

I. INTRODUCTION

In this paper, the problem of controlling two interacting
epidemics is faced aiming at an efficient resource allocation
strategy. Epidemic modeling and control has been increasing
its importance in the last few years for its capability in
analyzing epidemic spread and suggesting the most effective
strategy, [1]–[5]. The problem of controlling two epidemics
spreads has been considered in different control frameworks,
depending on the specificity of the diseases considered and,
in particular, on the modalities of contagiousness. In [6] the
concept of syndemic is discussed, enhancing the aspects of
disease concentration, disease interaction and the social forces
that give rise to them. The example of two epidemics not
mutually causal is shown as well as the case in which the
two epidemics have reciprocal relationships with each other
and similar bidirectional relationship with the HIV epidemic.
Two contemporary epidemic diseases have been considered in
literature from different points of view, considering the case of
distinct populations or the same population in which a second
disease is overlying the first one and, besides less lethal,
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could become a serious complication. As examples of the first
situation, an epidemiological analysis of migration is studied
in [7], where in two distinct but interacting populations,
local and migrants, a pathology spreads out and an optimal
vaccination strategy is determined. A different framework is
considered in [8] here one disease is spreading among two
populations in interconnected regions. In the case in which
infected individuals recover and can be reinfected, the best
treatment action is to control preferentially the region with the
lower level of infection and only when there is resource left
over it is advisable to treat the other population. Sometimes
the spread of some diseases is promoted by prior infection
with another illness, as it happens with the HIV; this leads
to complex patterns of epidemiological behaviour, as in [9];
the interesting result is that the best strategy to face the main
disease is to reduce the infections upon which they depend.
In [10] the interactions between two different diseases are
discussed, the tuberculosis and the diabetes mellitus, showing
that the diabetes mellitus is a risk factor for tuberculosis, and
even that the latter may be caused by the diabetes. It is also
evidenced how malnutrition, HIV, crowded living conditions
and low level of hospitals contribute to high incidence of
tuberculosis. A specific simulation study to analyze compli-
cations in case of a serious disease is proposed in [11], where
the typhoid fever is modeled and many complications are
considered, along with data about the population.

In this paper a different point of view is faced; it is
considered a unique population with two pathologies: the
serious one that may be transmitted only by contacts with
infected patients; the other that may be fatal only when it
becomes a complication of the first one. Moreover the latter
yields an immunity, whereas the second one could be caught
repeatedly. Therefore, five classes are considered: the subjects
in the first category, that can caught both the pathologies;
the subjects in the second class that have the immunity from
the first contagious epidemic. Then there are three classes of
patients: the first one with patients with only the dangerous
contagious disease; the second one with both; then the the
class of patients that has the second disease and could caught
also the first one. Spontaneous healing is assumed as well
as different birth and death rate from each classes. The two-
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epidemics model is controlled by using an optimal control
strategy. The paper is organized as follows; in Section II
the mathematical model proposed is discussed, whereas the
optimal control problem formulation is introduced in Section
III. Numerical simulations and discussions are proposed in
Section IV, whereas conclusions are in Section V.

II. THE MATHEMATICAL MODEL

The mathematical model proposed considers the possibility
that, along with an infectious disease, a second pathology can
be present, which is not particularly dangerous when it is the
only one affecting the patients, but it can be particularly risky
in combination with the infectious one. Typical examples are
the HIV or the pneumonia that weaken a patient that conse-
quently becomes vulnerable to other diseases (in general not so
dangerous). This is also what happens to elderly population
that are sensibly monitored and invited by the government
to participate to vaccination’s campaign, especially to avoid
complications.

The starting point is a classical model for epidemic infec-
tious like the SIR [12], in which the population is divided into
Susceptible subjects, the ones that can be infected, Infected,
the ill patients, and Recovered, the ones that are immune or
by vaccination or after having been healed for the infection.
The possibility to get the second pathology, for which non im-
munization is supposed, requires a deeper distinction between
individuals and the introduction of two more classes. In fact,
the infected patients can be divided according to two possible
conditions, depending from the fact that they are or are not
affected by the second pathology. Moreover, the possibility of
being affected by the second pathology for susceptible subjects
requires the introduction of a further class for the patients with
the second pathology but not still immune from the epidemic
disease. Then, five states are introduced:
• x1: the individuals than can be infected by the contagious

illness;
• x2: the individuals immune from the contagious illness;
• x3: the patients infected but not affected by the second

pathology;
• x4: the patients affected by both the pathologies;
• x5: the patients affected by the second pathology only,

non immune from the infectious illness.
Individuals x1 and x2 can become affected by the second
pathology. The epidemic diffusion depends on the contacts
and the interactions between infected (x3 and /or x4) and non
immune individuals (x1 and / or x5). The contagious rate is
denoted by β and depends on the number of possible dan-
gerous contacts and on the probability of virus transmission;
without particular assumptions, it is assumed the same for any
interaction term. The second pathology (the complication) can
occurr with a rate αij , where the pedices denote the transition
from the state i to the state j; these rates can be assumed
different, to put in evidence the differences between healthy
people and infected ones. It is assumed that the recovery from
the second illness can be also spontaneous from the x5 class,
and the rate of autonomous healing is denoted again with he

coefficients α51, being a natural transition proportional to the
number of subjects.

Four control actions are considered:
i. u1 represents the action devoted to vaccinate healthy non

immune individuals x1, making them transit to the x2;
ii. u2 is the therapy action over the patients in x3;

iii. u3 is the therapy action over the patients in x4;
iv. u4 the therapy for the second illness, applied to x5.

Each control ui is proportional, by a coefficient γi, to
the number of subjects on which it directly acts. In each
compartment new incomers µi and a percentage of removed
people, δixi, are included. Then, the resulting mathematical
model describing the evolution of an epidemic with possible
degeneration by a second pathology is

ẋ1 = −βx1x3 − βx1x4 − α15x1 + α51x5

−γ1x1u1 + γ4x5u4 − δ1x1 + µ1

ẋ2 = γ1x1u1 + γ2x3u2 + γ3x4u3 − δ2x2 + µ2

ẋ3 = βx1x3 + βx1x4 − α34x3 − γ2x3u2
−δ3x3 + µ3

ẋ4 = α34x3 + βx4x5 + βx3x5

−γ3x4u3 − δ4x4 + µ4

ẋ5 = α15x1 − α51x5 − βx4x5 − βx3x5
−γ4x5u4 − δ5x5 + µ5 (1)

which is shown in Figure 1.

Fig. 1. Block diagram of the considered model.

III. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

An optimal control problem is defined for the containment
of the epidemic spread, with particular attention to the patients
with the two pathologies; this approach suggests the best
strategy to allocate properly the resources, also distinguishing
between the different level of illness. The necessity of contain-
ing the number of infected individuals and the cost of the inter-
vention suggest the introduction of a cost index which weights
both the number of infected individuals and the control cost.
Denoting the state x by x =

(
x1 x2 x3 x4 x5

)T ∈ R5
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and the control u =
(
u1 u2 u3 u4

)T ∈ R4 , a classical
quadratic structure is chosen and the cost function adopted is

J =
1

2

∫ tf

t0

(
xTQx+ uTRu

)
dt (2)

with

Q =


0 0 0 0 0
0 0 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5

R =


r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4

 (3)

denoting with qi, i = 3, 4, 5 and with ri, i = 1, .., 4 the
weights of the state variables and the control respectively. No
constrain has been introduced on the control amplitude, whose
maximum value is defined through the minimization procedure
on (2), the final time tf is fixed while the final state value is
left free. From (1) and (2), the corresponding Hamiltonian is

H =
1

2

(
q3x

2
3 + q4x

2
4 + q5x

2
5 + r1u

2
1 + r2u

2
2

+r3u
2
3 + r4u

2
4 + r5u

2
5

)
− λ1 (βx1x3

+βx1x4 + α15x1 − α51x5 + γ1x1u1

−γ4x5u4 + δ1x1 − µ1) + λ2 (γ1x1u1

+γ2x3u2 + γ3x4u3 − δ2x2 + µ2)

+λ3 (βx1x3 + βx1x4 − α34x3 − γ2x3u2
−δ3x3 + µ3) + λ4 (α34x3 + βx4x5

+βx3x5 − γ3x4u3 − δ4x4 + µ4)

+λ5 (α15x1 − α51x5 − βx4x5 − βx3x5
−γ4x5u4 − δ5x5 + µ5) (4)

The Hamiltonian function is constantly equal to zero along the
optimal trajectories over the whole control interval, since the
final time tf is fixed. The necessary conditions for the costate
λ ∈ R5 are λ̇i = − ∂H

∂xi
, i = 1, . . . , 5, which give

λ̇1 = βλ1x3 + βλ1x4 + α15λ1 + γ1λ1u1

+δ1λ1 − γ1λ2u1 − βλ3x3 − βλ3x4
−α15λ5 − βλ3x3 − βλ3x4 − α15λ5 (5)

λ̇2 = δ2λ2 (6)
λ̇3 = −q3x3 + βx1λ1 − γ2λ2u2 + βx1λ3

+α34λ3 + γ2λ3u2 + δ3λ3 − α34λ4

−βλ4x5 + βλ5x5 (7)
λ̇4 = −q4x4 + βx1λ1 − γ3λ2u3 − βx1λ3

−βλ4x5 + γ3λ4u3 + δ4λ4 + βλ5x5 (8)
λ̇5 = −q5x5 − α51λ1 − γ4λ1u4 − βx4λ4

−βx3λ4 + α51λ5 + βx4λ5 + βx3λ5

+γ4λ5u4 + δ5λ5 (9)

for which λi(tf ) = 0, i = 1 . . . , 5, hold since x(tf ) is not
fixed, while for the control u they are

0 =
∂H

∂u1
= r1u1 − γ1λ1x1 (10)

0 =
∂H

∂u2
= r2u2 − γ2λ3x3 (11)

0 =
∂H

∂u3
= r3u3 + γ3λ2x4 − γ3λ4x4 (12)

0 =
∂H

∂u4
= r4u4 − γ4λ1x5 − γ4λ5x5 (13)

From (10)–(13) the expressions for the controls are

u1 =
γ1
r1
λ1x1 u2 =

γ2
r2
λ3x2

u3 = −γ3
r3

(λ2 − λ4)x4 u4 = −γ4
r4

(λ1 − λ5)x5

for which it is necessary to compute x(t) and λ(t), from t = t0
to t = tf , making use of equations (1), to be integrated from
x(t0) = x0, and equations (5)–(9) to be integrated backwardly
from λi(tf ) = 0, i = 1, 2, 3, 4.

IV. SIMULATIONS RESULTS

In this Section the results of some simulations are reported;
the optimal control problem has been solved numerically.
More precisely, the algorithm adopted is based on a sequential
quadratic programming method: at each iteration a quadratic
programming subproblem is solved by using a quasi-Newton
approximation of the Hessian of the Lagrangian function.
Different cases have been considered both to highlight the
consistency of the model firstly introduced herein and to verify
the effectiveness of the optimal control problem formulated in
Section III. For the numerical simulations, the following values
of the parameters are used: β = 0.01 for the infection rate;
α15 = α34 = 0.1 for the contract rates of the second pathol-
ogy; α51 = α43 = 0.05 for the recovery, with the hypothesis
that it is easier to become ill than to recover. Moreover, without
particular assumption, the same effectiveness of all the control
actions has been chosen, and then γi = 1, i = 1, 2, 3, 4,
whereas different death rates have been considered, taking
δ1 = δ2 = δ5 = 0.05, δ3 = 0.2, δ4 = 0.5. Finally, the
newcomers for all the groups, µi, i = 1, . . . , 5 are assumed
equal to 10. The choice of these numerical values has been
guided by similarity with respect to classical epidemic models,
such as the SIR one.

The initial conditions assumed reflect the situation in which
the population is mostly composed by susceptible subjects and
a small number of infected individuals. Then, they are set
as x1(0) = 1000, x2(0) = 0, x3(0) = 10, x4(0) = 0 and
x5(0) = 0. All the control weights in the cost function (2)
are initially set equal to r1 = r2 = r3 = r4 = 10. The term
xTQx in (2) is referred to the number of dead individuals
among the three groups of patients. Then, each term qix

2
i

should correspond to such a number; the result is obtained
setting qi = δ2i , i = 3, 4, 5.
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Fig. 2. The optimal controls.

A. Optimal control solution

To study the effectiveness of the model as well as the
reasonability of the optimal control strategy, a first analysis
is performed assigning the same weight to all the control
in the cost index; as depicted in Figure 2, this brings to a
strong vaccination action at the beginning, as it is reasonable
expected, with the other actions becoming progressively more
effective.

The overall obtained control strategy implies a significant
decrease in the number of subjects in the x3 , x4 classes,
and, in a smaller percentage, also in the x1 class. The number
of subjects immune from the first dangerous disease, the
x2 ones, increases, as well as those with only the second
illness, the x5 subjects. In Table I it is reported, for each
class, an evaluation of the differences Pi, i = 1, .., 5 between
the number of subjects under the obtained control actions of
Figure 2 and the corresponding values of the uncontrolled
cases, normalized with respect to the total number of subjects
in the non controlled case, evaluated in the same instants. In
particular the values are considered with a time step of three
months, from the beginning of the control period to the end
fixed at 2 years.

TABLE I
COMPARISON

T ime P1 (%) P2(%) P3(%) P4 (%) P5(%)
months
0 0 0 0 0 0
3 -63.7 73.2 -8.1 -0.19 -1.13
6 -31 85.7 -50 -2.4 -1.1
9 2.1 92.2 -83.79 -6.5 0.58
12 5.2 97.9 -86.17 -8.84 0.9
15 5.1 102.6 -85.5 -10.6 0.96
18 4.9 107 -82.4 -12.2 1.0
21 4.98 111.4 -80.2 -13. 1.117
24 5 114.6 -78.2 -14.6 1.13

The results are reasonable, since the application of the
vaccine control and/or the recovery from the x3 and the x4
classes implies the permanent immunity, and therefore the

increase of the other two classes, the x2 and the x5. Also
the number of subjects in the x1 class, after a strong decrease
up to month 6, increases, being less frequent the infectious
contacts with patients in x3 and x4 classes.

B. The vaccination effects

The first choice already discussed of the weights in the cost
index, while being useful for studying the model, does not take
into account some reasonable considerations, to be applied
especially in case of resource limitations. For example, it is
obvious that the role of vaccination is significantly different
from the one of medication on the subjects in the x5 class
and deserves a predominant study in this analysis; therefore
from now on the control u4 has been assumed equal to zero.
Moreover, the effects of different choices for γ1 have been
studied, using the values 1, 0.8, 0.6, 0.5. The parameter γ1 = 1
means that the total effect is obtained, whereas γ1 = 0.5 means
that the vaccine reaches only 50% of the efficacy. This analysis
can be used also to evaluate the behaviour of the epidemic
disease corresponding to a refusal of vaccination prevention
among the population.
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Fig. 3. u1(t) for different values of γ1.
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Fig. 5. u3(t) for different values of γ1.
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Fig. 6. x1(t) for different values of γ1.

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

900

1000

Time  t

x 2(t
)

 

 

γ
1
=1

γ
1
=0.8

γ
1
=0.6

γ
1
=0.5

Fig. 7. x2(t) for different values of γ1.

In Figure 3 it is shown that with a lower value of γ1 it
is required a slight increment in the necessity of vaccination
u1, and higher levels of therapy u2 and u3, as in Figures 4
and 5, respectively. The individuals behaviour is consequently
affected by an higher number of subjects getting ill, both in
the x3 and in the x4 class, as reported in Figure 8, 9 and
10. The number of subjects x1(t) decreases as γ1 increases
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Fig. 8. x3(t) for different values of γ1.
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Fig. 9. x4(t) for different values of γ1.
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Fig. 10. x5(t) for different values of γ1.

and, consequently, x2(t) reaches more rapidly higher values,
as shown in Figures 6 and 7 respectively.

C. The control weights contribution

To investigate the influence of the choice of the weights
in the cost index, Table II and Table III are displayed. To
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characterise the effects of a control strategy in contrasting
the two contemporary diseases considered in this case, the
number of dead people in the categories of the ill subjects,
the x3, x4 and x5, is reported, with the idea that the more an
intervention is effective, the lower is the number of people
which die. This analysis is reported in Table II, with the
results of the simulations for all the possible combinations
of high (100) and low (10) values for the control weights ri,
i = 1, 2, 3. The number of dead individuals has been computed
evaluating the time integral of each xi(t) over the control time
[0, 2] years, for each class separately and for their sum. At
the same time, also the strength of the corresponding controls
has been evaluated, in order to compare the different costs.
These values are reported in Table III, where, for the same
combination of weights as in Table II, the integrals of the
control actions are computed, along with with their sum. It
can be observed the importance of the control u1: when a
lower cost (r1 = 10) is associated to u1 in the cost function,
its amplitude can increase and this implies a sensible reduction
of the total number of dead patients; the four lower numbers
of total diseased dead in Table II, first five rows, correspond to
the case of r1 = 10. These results are obtained with total costs
substantially comparable, with a different distribution among
each input cost, as evident in Table III. The higher number
of dead people occurs when all the controls are ”expensive”
with respect to the number of patients xi, i = 3, 4, 5 that could
die for the two diseases, see the last three rows of Table II.
It is also interesting to note the significant number of people
dying for complication, dead in x4, that is comparable with
the one of those dying for the dangerous infectious disease.
This furtherly justifies the interest of this study. From the
control point of view, obviously the minor cost is obtained
when the weights ri, i = 1, 2, 3 are high, last row of III;
what is interesting is to note that the second lower value of
the cost, 54.2, is obtained with control actions that assure
also the second lower value of the number of dead patients,
1028, second row od II. This means that an efficient resource
allocations could guaranteed satisfactory results both from the
patients point of view and from the economic one.

TABLE II
DEAD.

Weights Dead Dead Dead Total diseased
r1, r2, r3 in x3 in x4 in x5 dead
10, 10, 10 446 414 88 948
10, 10, 100 397 544 87 1028
10, 100, 10 596 425 79 1100
10, 100, 100 562 576 77 1215
100, 10, 10 886 573 126 1585
100, 100, 10 1100 546 103 1749
100, 10, 100 775 795 125 1695
100, 100, 100 1025 794 101 1920

V. CONCLUSIONS

In this paper it is proposed a model that analyses a pop-
ulation in which two diseases are present. More precisely,

TABLE III
CONTROL COST.

Weights Cost Cost Cost Total cost
r1, r2, r3 of u1 of u2 of u3
10, 10, 10 32.99 14.70 15.06 62.76
10, 10, 100 33.66 16.46 3.90 54.02
10, 100, 10 35.10 5.00 16.80 56.90
10, 100, 100 35.87 5.38 4.51 45.76
100, 10, 10 15.73 34.04 22.68 72.45
100, 100, 10 20.11 15.51 25.71 61.33
100, 10, 100 16.82 35.64 7.53 59.99
100, 100, 100 20.94 15.74 8.25 44.93

one disease is infectious; the other one is not infectious and
not really dangerous by itself but could become mortal if it
comes together with the first disease, as a complication. The
topic is intriguing for different reasons; first, there are many
diseases, like the HIV/AIDS or the hepatitis, that debilitates
the patient’s body that becomes so vulnerable to other diseases,
even to light ailments, that can become fatal. The second
reason concerns the elderly population who are invited to get
vaccinated to avoid the flu, for example, and consequently also
to avoid complications that together with the main epidemic
can be mortal. The study proposed in this paper confirms the
importance of an efficient resources allocation that could yield
a decrease in the number of dead patients with a contextual
efficient cost distribution. Future developments include the
application of the model to case studies that could suggest
different interactions and control strategies.
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